Models for 31-Mode PVDF Energy Harvester for Wearable Applications
نویسندگان
چکیده
Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%.
منابع مشابه
Design, Fabrication and Characterization of Wearable Energy Harvester Using Polyvinylidene Fluoride
This paper describes the design, fabrication and characterization of Polyvinylidene Fluoride (PVDF) based piezoelectric energy harvester that scavenges energy from the movement of human limbs. It investigates the effect of a piezolaminated curvilinear shell structure on the power density of a wearable energy harvester through Finite Element Method (FEM) and experimental results. Curvilinear She...
متن کاملCharacterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications
Wearable medical and electronic devices demand a similarly wearable electrical power supply. Humanbased piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harves...
متن کاملAnalysis of Upper Bound Power Output for a Wrist-Worn Rotational Energy Harvester from Real-World Measured Inputs
Energy harvesting from human motion addresses the growing need for battery-free health and wellness sensors in wearable applications. The major obstacles to harvesting energy in such applications are low and random frequencies due to the nature of human motion. This paper presents a generalized rotational harvester model in 3 dimensions to determine the upper bound of power output from real wor...
متن کاملWE-Harvest: A Wearable Piezoelectric-Electromagnetic Energy Harvester
Wearable electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest, a new wearable energy harvesting system that combines the piezoelectric and electromagnetic energy harvesters for wearable devices. Regular human body motions, such as mov...
متن کاملA Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors
Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014